本文目录导航:
为什么量子力学的“叠加态”概念非常可怕呢?
前面文章中我讲解了量子力学的一个概念:叠加态。
也就是说一旦进入了微观世界,微观粒子的运动情况和我们宏观物体完全不一样,宏观物体在某一个时刻都永远只处于一个位置并且只拥有一个速度,但是微观粒子却是在某个局部范围内处于叠加态。
但是叠加态本身是否是一种科学的论述方式呢?为啥这个叠加态概念很可怕呢?今天我们来谈谈这个问题。
首先宏观世界有没有叠加态?其实还是有的,只不过宏观物体的叠加态非常的微弱,微弱的让我们可以直接忽略掉而已。
因为前面我专门写了一篇文章介绍“海森堡测不准原理”,宏观世界的物体波动性之所以不明显,就是因为质量的原因导致。
如果你没看这篇文章,建议可以先去看看。
很多网友对叠加态有误解,比如当我描述一个微观粒子在某时刻所处的位置时,用量子力学的语言来表达就是:微观粒子此时处于A的概率是30%,处于B的概率是50%,处于C的概率是20%,也就是微观粒子同时处于A、B、C的叠加态。
但是大部分网友会这样解释:因为微观粒子运动速度太快了,所以导致我们看起来微观粒子好像同时处于多个位置,如果我们的观察技术提升,那么还是可以看到微观粒子在某一个时刻其实只处于一个位置。
以上的网友解释应该说非常符合我们的常规和直觉对不对?可惜这个解释是错的,因为我们目前的观察技术而言,微观粒子的运动速度再快能快过光速吗?现在的科技发展测量高速粒子的运动速度技术已经非常成熟了,所以你首先要明白一个事实:微观粒子要用叠加态来描述,不是因为微观粒子的运动速度太快导致的。
其次你要明白一点,假设此时有一个电子,我们计算出来电子处于A位置的概率是20%,B位置的概率是80%,那么电子就同时处于A、B位置的叠加态对不对。此时再举一个类似的例子,假设宏观世界里面抛硬币,我往上一扔然后仍由硬币落地,但是我并不去看落地的结果,那么此时我们知道,硬币是正面的概率是50%,硬币的反面概率也是50%,那么请问:此时我们可以说硬币处于正面和反面的叠加态不?
大家可以好好思考这个问题,其实对于扔硬币来说,我们虽然知道概率是各占50%,但是我们未观察结果前,我们不能说硬币处于叠加态。
但是面对一个电子,我们未观察前,我们却可以说电子的确是处于A和B的叠加态。
大家明白这两者的差别没?
没错,电子处于微观世界,当你把一个电子控制在某个局部范围内(比如A和B位置),那么此时你不去观察时,电子的确是同时处于A和B两个位置的,只不过A和B两个位置分到的概率值不同而已。
但是如果你再宏观世界去抛硬币,当硬币落地后,你如果不去观察硬币,那么硬币绝对不是同时处于正面和反面的叠加态,硬币肯定是只处于某一个状态且概率是100%,另一个状态概率是0%。
所以理解叠加态的关键就在于:观察。
没错!当你未观察前,你可以说电子同时处于A和B叠加,但是不能说硬币同时处于正面和反面的叠加。
而且最关键的问题在于,当你未观察前,电子的状态是不确定的,但是硬币正反面结果却是确定的。
当你观察的一瞬间,电子的状态才确定,但是硬币的状态却是你观察前就确定了。
当你再次不观察后,电子的状态再次不确定,硬币的状态依然是早就确定了。
所以微观世界和宏观世界的差别就是:
微观世界:观察前电子状态不确定,观察一瞬间电子状态确定,观察后电子状态再次不确定。
宏观世界:观察前物体状态确定,观察一瞬间物体状态确定,观察后物体状态依然确定。
而且还有一个重点是:微观世界的物体,为啥观察的一瞬间状态就确定了,因为正是你的观察导致微观粒子的状态被确定下来。
你的观察不仅仅是“发现”微观粒子的状态,你的观察还“创造”了微观粒子的状态。
你对微观世界的观察不仅仅是“发现”,你的观察行为和看到的结果产生了因果关系。
当你理解到这一层,你才算真正理解微观粒子的叠加态,到底是要表达啥意思。
量子物理说明了什么?
想象一下吧,如果说世界真的被某个超脱于宇宙之外的计算机模拟着,那我们照理来讲应该完全察觉不出这一点,毕竟我们也是模拟出来的。
当然,这并不是重点和重要的。
重要的在于:叠加态是真实的!是的,一个东西就的确可以处在两个不同的状态上,比如同时在法兰克福和合肥。
然后必须要澄清一个人们对量子物理的误解:世界并不是离散的!当然这个和上面的其实是一个意思。
世界是连续的。
如果你稍微懂一点量子物理,你应该知道量子物理中的量子态是在Hilbert空间里面演化,而Hilbert空间是连续的。
而坐标空间,或者说我们的三维世界也是hilbert空间的子空间。
换句话说,我们这个世界也是连续的。
因为世界上的原子是有限数目的,我们确实可以(?)把描述整个宇宙的Hamiltonian当成一个矩阵写出来,然后算出它的所有eigenvalue(也就是你们说的离散的能量值),但问题是,这些eigenvalue并不代表宇宙只能处在这些能量的状态上,宇宙完全可以在这些eigenvalue对应的本征态构成的hilbert空间里面任意演化。
不是学物理的看不懂也没关系,反正领会精神就行了:世界是连续。
而且非常非常的连续,连续到你以为分开的空间都被纠缠在一起。
再说一点,塌缩现象。
这个东西并不是观察者效应。
民科或神棍们最喜欢的就是那这个测量塌缩现象说事。
但问题在于,塌缩根本上是小量子系统(被观察的东西)和大量子系统(观察者或者测量仪器)耦合之后在这个巨大的hilbert空间里面发生的特别特别复杂的演化。
所以它并不神棍。
于是,一个东西之前是既是1又是0,这件事情是真实的。
然后它被你测量后变成了纯0,这个也是真实的,因为这东西是被你用“测量”这个过程给玩坏了(而不是你测量之前就是0),然后他被变成0了。
量子力学的“叠加态”“纠缠态”理论不可证伪
量子力学的哥本哈根诠释引入了两个核心概念:叠加态和纠缠态。
这一诠释展示了量子世界中存在的不确定性,允许一个对象同时处于多种状态,例如猫同时处于生与死的叠加状态。
薛定谔的猫思想实验旨在揭示这种叠加状态的荒谬性,但在量子力学的框架内,这种看似矛盾的“既死又活”状态是理论所允许的。
哥本哈根诠释还提出了观察者效应的概念,即量子对象在没有被观测时保持在叠加态,但一旦进行测量,就会立即坍缩为一个确定的状态,即波函数坍缩。
这种观察者效应意味着我们无法直接观察到叠加态或纠缠态,因为它们在被观测之前并不存在于我们的感知世界中,因此无法被实验证实或证伪。
从科学哲学家卡尔-波普尔的角度来看,理论的可证伪性是科学的一个基本要求。
如果一个理论无法被证伪,它可能会被视为伪科学。
由于量子力学的叠加态和纠缠态理论具有不可观测性,它们似乎挑战了这一科学标准。
这引发了对这些理论本质的深入思考:它们是科学的,还是仅仅停留在理论层面的谜团?
评论(0)