本文目录导航:
近期读完的一本书《规模》
《规模》一书主要是想说明把规模法则作为一种基础法则框架去解释世间的一切。
其中的规模法则是指:不同的生物体、城市或者公司,都可以看做是同一事物不同程度的放大或缩小版本,都有其相似性在里边。
书中也主要是通过这三个方面去论证说明。
首先讲到,在一般人的直觉中,规模的变化总是成线性的等比例变化。
如人可以无限等比例的放大,城市人口增加一倍,道路长度也应该增加一倍,犯罪率也增加一倍。
而实际是,规模的变化还有亚线性变化和超线性变化两种。
人的承重能力就是随体重成亚线性变化,所以人不可能无限放大,最终体重会把自己压垮。
城市道路随城市人口亚线性变化,体现规模效益,但犯罪率会成超线性变化,犯罪率会上升。
其次讲生物体,随着体积的增大,其代谢率或成比例下降,所以体积大的生物体心跳变慢,寿命变长,体现规模效益。
对于同一生物物种来说,随着体积的增长,越来越多的能量需要维护已有细胞,所以当体积到达一定程度后,开始停止生长。
而且随着细胞损伤越来越严重,最终导致死亡。
对于城市来说,随着城市人口的增加,所需要的基础供给会响应减少,成亚线性增长,如道路长度,加油站、医院、律所数量,电线、水管长度。
而相对的产出却成超线性增长,如创新、平均工资、就业机会,还有犯罪率、流行病等。
所以城市能保持开放性增长,即城市越大,增长的越快。
而对于公司来说,其类似于生物体,有规模效益,但无法实现开放性增长。
因公司经营数据不易获得,所以书中更多的说明了公司的消亡。
一般来说,只有5%的公司能经营超过30年,到达50年时公司的消亡比例几乎达到100%,50%左右的公司在10年左右就消亡。
其中比较新奇的几个概念:涌现——复杂机体表现出的组成个体都不具有的特性。
网络原理 :空间填充——网络的触角必须延伸至它所服务的整个系统的各个角落。
终端单元的恒定性——一个给定的网络的终端单元必须是近似恒定的。
优化——在既定的设计和不同德尔网络限制条件下能够得到的最小可能。
如何理解生物学的发展历史?
生物学是从分子、细胞、机体乃至生态系统等不同层次研究生命现象的本质、生物的起源进化、遗传变异、生长发育等生命活动规律的科学。
其包含的范畴相当广泛,包括形态学、微生物学、生态学、遗传学、分子生物学、免疫学、植物学、动物学、细胞生物学、环境化学等。
生物学随着人类认识世界及科学技术的发展,大概经历了四个时期:萌芽时期、古代生物学时期、近代生物学时期和现代生物学时期。
1.萌芽时期指人类产生(约300万年前)到阶级社会出现(约4000年前)之间的一段时期。
这时人类处于石器时代,这一时期的人类还处于认识世界的阶段,原始人开始栽培植物、饲养动物,并有了原始的医术,这一切成为生物学发展的启蒙。
2.古代生物学到了奴隶社会后期(约4000年前开始)和封建社会,人类进入了铁器时代。
随着生产的发展,出现了原始的农业、牧业和医药业,有了生物知识的积累,植物学、动物学和解剖学进入搜集事实的阶段。
在搜集的同时也进行了整理,被后人称为,古代生物学。
古代生物学在欧洲以古希腊为中心,著名的学者有亚里士多德(研究形态学和分类学)和古罗马的盖仑(研究解剖学和生理学),他们的学说整整统治了生物学领域1000年。
其中亚里士多德没有停留在搜集、观察和纯粹的自然描述上,而是进一步作出哲学概括。
在解释生命现象时,亚里士多德同先辈们一样,认为有机体最初是从有机基质里产生的,无机的质料可以变成有机的生命。
中国的古代生物学,则侧重研究农学和医药学。
贾思褫(约480—550年)著有《齐民要术》,系统地总结了农牧业生产经验,提出了相关变异规律,首次提到根瘤菌的作用。
沈括(1031—1095年)著有《梦溪笔谈》,该书中有关生物学的条目近百条,记载了生物的形态、分布等相关资料。
3.近代生物学从15世纪下半叶到19世纪,这一时期科学技术得到巨大发展,特别是工业革命开始后,生物学进入了全面繁荣的时代。
如细胞的发现,达尔文生物进化论的创立,孟德尔遗传学的提出。
巴斯德和科赫等人奠定了微生物学的科学基础,并在工农业和医学上产生了巨大影响。
17世纪建立起来的动物(包括人体)生理学到19世纪有了明显的进展,著名学者有弥勒、杜布瓦·雷蒙、谢切诺夫和巴甫洛夫等。
由于萨克斯、普费弗和季米里亚捷夫的努力,植物生理学在理论上达到了系统化。
胡克改进了显微镜的使用方法,发表了《显微镜学》,内载生物学史上最早的细胞结构图,并命名为“cell”。
达尔文以博物学家的身份乘英国海军勘探船“贝格尔”号,经历了5年的环球旅行,之后出版了震动当时学术界的《物种起源》。
该书从变异性、遗传性、生存竞争和适应性等方面论述了生物界的进化现象,提出了以自然选择、适者生存为基础的进化学说。
孟德尔多年从事植物杂交试验研究,并在自然科学学会杂志发表了论文《植物杂交试验》,文中提出了遗传单位因子(现在称为“基因”)的概念,阐明了生物遗传的基本规律,即分离规律和自由组合定律(亦称独立分配定律),使生物学研究逐渐集中到分析生命活动的基本规律上,生物学的发展进入“实验生物学阶段”。
巴斯德在实验中严格控制无菌条件,并用长曲颈瓶净化与无菌肉汁接触的空气,证实了肉汁腐败的原因是来自外界的微生物污染,澄清了“自然发生说”谬论,为微生物学奠定了基础。
4.现代生物学20世纪的生物学属于现代生物学的范畴,随着科学技术的进一步发展,生物学向理论(包括生物进化)和实践((主要是植物育种)两个方面深入发展。
与此同时,由于物理学、化学和数学对生物学的渗透及许多新的研究手段的应用,一些新的边缘学科如生物物理、生物数学应运而生,随着分子生物学和分子遗传学的发展及形态研究的深入,细胞学也进入分子水平,出现了细胞生物学。
现代生物学正向微观和综合方向深入。
宏观方面,从研究生物体的器官、整体到研究种群、群落和生物圈,生态学为典型代表。
现代生态学是研究生物有机体与生活场所的相互关系的科学,亦有人称之为研究生物生存条件、生物与环境相互作用过程及规律的科学,其目的是指导人与生物圈,即自然资源与环境的协调发展。
第二次世界大战以后,人类社会经济与科技飞速发展,工业废物、农药化肥残毒、交通工具尾气、城市废品等造成了环境污染,破坏了自然生态系统的自我调节和相对平衡。
全球变暖、臭氧层破坏、水土流失、沙漠扩大、水源枯竭、气候异常、森林消失等生态危机都是人类不适当的活动造成的。
根据生态学中物种共生、物质再生循环及结构与功能协调等原则,以人与自然协调关系为基础、高效和谐为方向,将生态应用于废水污水资源化处理、湖泊富营养化控制、作物种植、森林管理、盐场管理、水产养殖、土地改良、废弃地开发和资源再生等方面,收到了显著的效果。
微观方面,如“细胞生物学”“分子生物学”“量子生物学”的发展,分子生物学为其中典型代表。
现代分子生物学是通过研究生物大分子(核酸、蛋白质)的结构、功能和生物合成等方面阐明各种生命现象本质的科学。
其目的是在分子水平上,对细胞的活动、生长发育、消亡、物质和能量代谢、遗传、衰老等重要生命活动进行探索。
分子生物学的研究关系到人类的方方面面。
如不同种类生物间的亲缘关系,过去主要根据不同种类生物在形态构造上的异同确定,这对形态结构较为简单的生物如细菌就很困难。
通过对不同种类生物的蛋白质或核酸分子的测定,可以克服上述困难,并能更客观地反映生物间的亲缘关系。
分子生物学与医学、农业、生物工程等方面的关系十分密切。
分子生物学的研究成果使不同生物体之间的基因转移成为可能,在农业上开辟了育种的新途径,在医学上有可能治疗某些遗传性疾病,在工业上形成了以基因工程为基础的新兴工业,从而有可能生产出许多用常规技术从天然来源无法得到或无法大量得到的生物制品。
目前的克隆技术只是分子生物学的一个应用,可以想象未来随着研究的深入及分子生物学的进一步发展,人类的生活必将更美好。
综上所述,生物学发展经历了四个主要时期,即萌芽时期、古代生物学时期、近代生物学时期和现代生物学时期。
21世纪不但要认识世界、改造世界,而且要保护世界,对生物学的深层探讨和研究必将会带来丰厚的社会、经济和生态效益,生物学正成为新的科技革命的重要推动力。
然而无论累积了多少生物学知识,已知的与未知的相比,不过是沧海一粟。
时代在演变,科学技术在发展,人类对世界的认识亦不断前进,随着历史的发展,生物学必将迎来崭新的篇章。
什么是生物信息学?
生物信息学一, 生物信息学发展简介生物信息学是建立在分子生物学的基础上的,因此,要了解生物信息学,就必须先对分子生物学的发展有一个简单的了解.研究生物细胞的生物大分子的结构与功能很早就已经开始,1866年孟德尔从实验上提出了假设:基因是以生物成分存在[1],1871年Miescher从死的白细胞核中分离出脱氧核糖核酸(DNA),在Avery和McCarty于1944年证明了DNA是生命器官的遗传物质以前,人们仍然认为染色体蛋白质携带基因,而DNA是一个次要的角色.1944年Chargaff发现了著名的Chargaff规律,即DNA中鸟嘌呤的量与胞嘧定的量总是相等,腺嘌呤与胸腺嘧啶的量相等.与此同时,Wilkins与Franklin用X射线衍射技术测定了DNA纤维的结构.1953年James Watson 和FrancisCrick在Nature杂志上推测出DNA的三维结构(双螺旋)以磷酸糖链形成发双股螺旋,脱氧核糖上的碱基按Chargaff规律构成双股磷酸糖链之间的碱基对.这个模型表明DNA具有自身互补的结构,根据碱基对原则,DNA中贮存的遗传信息可以精确地进行复制.他们的理论奠定了分子生物学的基础双螺旋模型已经预示出了DNA复制的规则,Kornberg于1956年从大肠杆菌()中分离出DNA聚合酶I(DNA polymerase I),能使4种dNTP连接成的复制需要一个DNA作为模板与Stahl(1958)用实验方法证明了DNA复制是一种半保留复制于1954年提出了遗传信息传递的规律,DNA是合成RNA的模板,RNA又是合成蛋白质的模板,称之为中心法则(Central dogma),这一中心法则对以后分子生物学和生物信息学的发展都起到了极其重要的指导作用.经过Nirenberg和Matthai(1963)的努力研究,编码20氨基酸的遗传密码得到了破译.限制性内切酶的发现和重组DNA的克隆(clone)奠定了基因工程的技术基础.正是由于分子生物学的研究对生命科学的发展有巨大的推动作用,生物信息学的出现也就成了一种必然.2001年2月,人类基因组工程测序的完成,使生物信息学走向了一个高潮.由于DNA自动测序技术的快速发展,DNA数据库中的核酸序列公共数据量以每天106bp速度增长,生物信息迅速地膨胀成数据的海洋.毫无疑问,我们正从一个积累数据向解释数据的时代转变,数据量的巨大积累往往蕴含着潜在突破性发现的可能,生物信息学正是从这一前提产生的交叉学科.粗略地说,该领域的核心内容是研究如何通过对DNA序列的统计计算分析,更加深入地理解DNA序列,结构,演化及其与生物功能之间的关系,其研究课题涉及到分子生物学,分子演化及结构生物学,统计学及计算机科学等许多领域.生物信息学是内涵非常丰富的学科,其核心是基因组信息学,包括基因组信息的获取,处理,存储,分配和解释.基因组信息学的关键是读懂基因组的核苷酸顺序,即全部基因在染色体上的确切位置以及各DNA片段的功能;同时在发现了新基因信息之后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行药物设计[2].了解基因表达的调控机理也是生物信息学的重要内容,根据生物分子在基因调控中的作用,描述人类疾病的诊断,治疗内在规律.它的研究目标是揭示基因组信息结构的复杂性及遗传语言的根本规律,解释生命的遗传语言.生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研究的前沿.二, 生物信息学的主要研究方向生物信息学在短短十几年间,已经形成了多个研究方向,以下简要介绍一些主要的研究重点.1,序列比对(Sequence Alignment)序列比对的基本问题是比较两个或两个以上符号序列的相似性或不相似性.从生物学的初衷来看,这一问题包含了以下几个意义[3]:从相互重叠的序列片断中重构DNA的完整序列.在各种试验条件下从探测数据(probe target=_blank>生物信息学(Bioinformatics)是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。
它是当今生命科学和自然科学的重大前沿领域之一,同时也将是21世纪自然科学的核心领域之一。
其研究重点主要体现在基因组学(Genomics)和蛋白学(Proteomics)两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。
生物信息学是一门利用计算机技术研究生物系统之规律的学科。
目前的生物信息学基本上只是分子生物学与信息技术(尤其是因特网技术)的结合体。
生物信息学的研究材料和结果就是各种各样的生物学数据,其研究工具是计算机,研究方法包括对生物学数据的搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。
1990年代以来,伴随着各种基因组测序计划的展开和分子结构测定技术的突破和Internet的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。
对生物信息学工作者提出了严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学的另一个挑战是从蛋白质的氨基酸序列预测蛋白质结构。
这个难题已困扰理论生物学家达半个多世纪,如今找到问题答案要求正变得日益迫切。
诺贝尔奖获得者W. Gilbert在1991年曾经指出:“传统生物学解决问题的方式是实验的。
现在,基于全部基因都将知晓,并以电子可操作的方式驻留在数据库中,新的生物学研究模式的出发点应是理论的。
一个科学家将从理论推测出发,然后再回到实验中去,追踪或验证这些理论假设”。
生物信息学的主要研究方向: 基因组学 - 蛋白质组学 - 系统生物学 - 比较基因组学
评论(0)