物理学家介绍 (物理学家介绍100字)

admin 2024-12-06 44 0

本文目录导航:

物理学家介绍

物理学家介绍——霍金1942年1月8日,霍金出生于英国牛津。

这一天正是伟大的物理学家、天文学家伽利略300年前阖然长逝的日子。

伽利略是最先提出了惯性定律原理(一切物体在不受外力作用时都会保持原来的运动状态)的人,后来牛顿系统地归纳了这个定律(因此后人也叫它“牛顿第一定律”),使之成为一切力学定律的基石。

爱因斯坦提出狭义相对论和广义相对论,彻底改变了人类的时空观念。

霍金的成就与这几位前辈相比又如何呢?他有资格跻身科学名人堂吗?让我们从他在学术界的第一次亮相看起:1970年,28岁的霍金和彭罗斯(R. Penrose)合作,证明了“奇点定理”:在一定条件下,按照广义相对论,宇宙大爆炸必然从一个“奇点”开始。

为此,他们共同获得1988年的沃尔夫物理奖。

霍金的贡献——对黑洞性质的研究和提出量子引力论——论重要程度虽赶不上牛顿的万有引力定律和爱因斯坦的两个相对论,但是足以为他在科学名人堂中留下一席之地。

尤其是他的量子引力论,整合了现代物理学的两大领域,自成体系,使他能与创立分子生物学(生物学与量子力学的成功结合)的科学家平起平坐。

在霍金之前,所有的宇宙理论都以广义相对论为基础,但是只有霍金发现并证明了广义相对论只是一个不完全的理论,它不能告诉我们宇宙起源的细节。

因为根据广义相对论得出的结论,所有的物理理论(包括它自己在内)都将在宇宙的开端处失效。

显然,广义相对论只是一个不完全的“部分”理论,所以奇点定理真正所显示的是,在极早期宇宙中有过一个时刻,那时宇宙是如此之小,以至于人们不得不考虑用20世纪另一个伟大的“部分”理论——专门描述微观世界的量子力学——来研究它。

霍金和他的搭档被迫从对极其巨大范围的理论研究转到对极其微小范围的理论研究。

恰好有这样一种可能存在的微型天体可作为研究对象。

正如霍金后来回忆的:“研究黑洞的性质,有助于我们同时理解大爆炸奇点,因为他们之间实在是太相似了。

”于是他开始潜心研究黑洞问题。

【名词解释 黑洞:一颗内部燃烧尽了的大质量恒星由于自身的重力作用,外壳不断向中心坍塌缩小,最后就会形成致密的黑洞。

黑洞是宇宙中的实体微粒,它们的体积趋向于零,而密度(密度=质量÷体积)几乎是无穷大,由于具有强大的引力,物体只要靠近这个微粒,就会被强大的引力吸住,连每秒传播30万千米的光也不能幸免。

也就是说,没有任何信号能够从黑洞的作用范围内传出,这个作用范围的界限被称为“视界”,人类无法看到里面的情形——对于观测者来说,那就是漆黑一片——这也是黑洞名字的由来。

】1971年,霍金指出,宇宙大爆炸时间可能产生像质子那么小(半径10-13厘米)的重约十亿吨的“太初黑洞”,它们的寿命大约和宇宙年龄相同。

1973年霍金、卡特尔(B. Carter)等人严格证明了“黑洞无毛定理”:“无论什么样的黑洞,其最终性质仅由几个物理量(质量、角动量、电荷)惟一确定”。

即当黑洞形成之后,只剩下这三个不能变为电磁辐射的守恒量,其他一切信息(“毛发”)都丧失了。

“黑洞”的命名者惠勒(J.A. Wheeler)戏称这特性为“黑洞无毛”。

华裔著名物理学家介绍吴有训吴有训先生于1916年考入南京高等师范学校理化部,受教于留美归来的胡刚复博士。

在胡先生的指导下,吴有训在国内即对X射线有了一定的了解。

1921年以优异成绩获得赴美留学机会。

该年底吴有训赴美,1922年初进入芝加哥大学。

其时,著名物理学家A•H•康普顿正以访问学者身份在芝加哥大学从事研究与教学,1923年他正式成为该校教授,该年5月康普顿发表了解释X射线被石墨散射后频率改变现象(后称康普顿效应)的论文。

当时也研究这一现象的美国物理界一位重要人物杜安已有所谓“箱子效应”和“三次辐射”的理论,因此他极力反对康普顿的工作。

吴有训先后以十几种元素为散射物质进一步做了大量深入研究,通过精心设计实验方案以无法辩驳的事实对康普顿的理论给予了极大支持。

这些成果得到了国际物理界的关注和承认。

相关数据被一些国际著作引用。

吴先生1926年获博士学位。

国外有的物理教科书,因尊重吴先生的工作而将康普顿效应称为康普顿—吴有训效应。

严济慈严先生1923年赴法国留学,1927年获科学博士学位。

1880年著名物理学家比埃尔•居里发现了晶体的压电效应,但压电效应的定量数据的获得,是严先生深入研究并精确测量给出的。

严济慈的导师是物理学家夏尔•法布里,他是居里夫妇的好朋友。

玛丽•居里夫人对严先生的研究非常支持,并把四十年前居里用过的石英晶体样品借给了严济慈。

著名的物理学家朗之万对严济慈也非常赏识,给予了许多指导和帮助。

严先生在大量实验基础上,总结出了石英晶体的压电效应及其反效应具有各向异性、饱和现象以及瞬时性等特性,扩充发展了居里的理论。

1927年法布里当选为法国科学院院士,在就职仪式上他宣读了他的得意弟子---严济慈的博士论文。

1931年严先生回国。

1935年与著名物理学家F•约里奥—居里及卡皮察同时当选为法国物理学会理事。

赵忠尧赵忠尧先生1927年到美国加州理工学院受教于1923年诺贝尔奖得主密里根,1930年获博士学位。

1979年丁肇中在西德同步幅射中心“佩特拉”加速器落成典礼时,向十多个国家上百名科学家这样介绍赵忠尧:“这位是正负电子产生和湮灭的最早发现者,没有他的发现,就没有现在正负电子对撞机”这是指赵先生在研究密里根给出的第二个课题(第一个课题被赵先生拒绝了)“硬γ射线通过物质时的吸收系数”时,测量到了反常吸收和特殊辐射现象。

所谓反常就是与当时比较公认的克莱因---仁科公式有很大出入,即只有在轻元素上的散射才符合而在通过重元素时相差很大,如当硬γ射线被铅散射时吸收系数比公式结果大了约40%。

由于密里根相信克莱因---仁科公式的结果,而对赵先生的结果不甚相信,以至将论文搁置了2个多月。

后来由于鲍文教授十分了解赵先生的工作,向密里根作了保证,文章才于1930年5月在美国《国家科学院院报》发表。

在接下来的实验中赵忠尧发现γ射线被铅散射时,除康普顿散射外,伴随着反常吸收还有一种特殊的光辐射出现。

由于当时所用的方法不能显示详细的机制,只能断定这两种现象不是由于核外壳层电子而是由于原子核所引起的。

事实上,反常吸收是由γ射线在原子核周围产生正负电子对而减少的结果,而特殊辐射就是一个正电子和一个负电子碰撞湮没而产生二个(或二个以上)光子的湮没辐射。

王淦昌丁肇中先生说过:“中国老一辈物理学家能留名学史上的有赵忠尧和王淦昌先生等。

”王先生1930年考取官费留学生,到德国柏林大学威廉皇家化学研究所,师从迈特纳,他先后在哥廷根和柏林大学有幸听过玻恩、米泽斯、海特勒、诺特海姆、弗兰克、薛定谔以及德拜等人的课。

1933年26岁的王先生完成博士论文《ThB+C+C11的β谱》,年底由著名物理学家冯•劳厄、玻登斯坦以及迈特纳等人组成的答辩委员会审查并通过了王淦昌的博士论文。

1934年1月王淦昌参观了卡文迪许实验室,拜会了卢瑟福、查得威克等物理学家。

1934年4月回国。

王先生的科学贡献主要有:提出了验证中微子存在的实验方案;利用宇宙线研究了μ介子衰变特性;首次发现了反西格马负超子;首次观察到在基本粒子相互作用中产生的带奇异夸克的反粒子,获1982年国家发明一等奖。

王先生参与了我国两弹研制的试验研究和组织领导,是我国核武器研制的主要奠基人之一。

钱学森钱学森(1911—),中国科学家,火箭专家,1911年12月1日生于上海,3岁时随父来到北京,1934年毕业于上海交通大学机械工程系,1935年赴美国研究航空工程和空气动力学,1938年获加利福尼亚理工学院博士学位。

后留在美国任讲师、副教授、教授以及超音速实验室主任和古根罕喷气推进研究中心主任。

1950年开始争取回归祖国,受到美国政府迫害,失去自由,历经5年于1955年才回到祖国,1958年起长期担任火箭、导弹和航天器研制的技术领导职务。

1959年,加入中国共产党。

现任中国科技协会名誉主席等职。

钱学森1935年进入麻省理工学院航空工程系。

当时美国唯独加州理工学院有一所空气动力学实验室,主任是匈牙利著名学者冯•卡门(也译为冯•卡曼)。

冯•卡门早年也是有成就的物理学家,是麦克斯•玻恩的好朋友及合作伙伴之一。

后来,卡门专门研究流体动力学和空气动力学,成为在这两方面极富盛名的权威。

1936年秋,钱先生慕名到加州访问卡门。

卡门对钱学森敏捷而又富于智慧的思维非常欣赏,建议钱学森到他这里来读博士学位。

从此钱学森在卡门指导下专攻高速空气动力学。

中国学生赢得了卡门的特殊感情,除钱先生外,他还培养出了林家翘、钱伟长及郭永怀等中国著名数学家、科学家。

他常说:“世界上最聪明的民族有两个,一个是匈牙利,一个是中国”。

在卡门的指导下,钱学森1933-1945年间在《航空科学》、《应用力学》等杂志发表8篇论文,推出了卡门---钱学森公式,提出了跨声速流动相似律等许多开创性工作。

1945年卡门任美国空军科学顾问团团长,授少将军衔,钱学森任顾问团火箭组组长,上校军衔。

第二次世界大战结束后,美国空军当局高度评价钱学森的工作,认为他为战争的胜利作出了巨大的贡献,卡门更是器重他的得意门生,称他为火箭方面最得力的专家。

钱学森几经磨难1955年才得以回国,为新中国火箭、导弹以及航空航天技术的发展做出了奠基性的工作。

1991年荣获《国家杰出贡献科学家》的称号。

钱三强钱三强(1913—1992),中国实验物理学家,浙江省吴兴县。

1929年考入北京大学理科预科,1932年考入清华大学物理系,1936年清华大学物理学系毕业。

1937年赴法国留学,在约里奥•居里夫妇指导下,在巴黎大学镭学研究所居里实验室和法兰西学院原子核化学实验室进行原子核物理的研究工作,1940年获法国国家博士学位,1942年底赴里昂等待乘船回国,由于太平洋航线中断,他滞留里昂大学任教,1944年和1947年起先后担任法国国家科学研究中心研究员和研究导师,1946年获法国科学院亨利•德巴微奖金。

1948年回国后,任清华大学物理学系教授和北平研究院原子学研究所所长。

中国科学院成立后历任近代物理研究所副所长、所长、计划局副局长、局长,学术秘书处秘书长,1956—1978年任副秘书长、1958年任原子能研究所所长,1978—1984年任副院长;1955年受聘为数学物理学化学部(现为数学物理学部)学部委员,任中国科学院主席团成员,特邀顾问。

1956—1978年还担任第二机械工业部副部长。

1951年起选为中国物理学会副理事长,1982年被选为理事长。

1978年被遴选为中国人民政治协商会议第六届全国委员会常务委员。

1992年6月28日0时28分于北京病逝,终年79岁。

钱三强1948年回国后培养了一批从事研究原子核科学的人材,建立起中国研究原子核科学的基地。

1955年起参加了原子能事业的建立和组织工作,将近代物理所改建为原子能研究所,领导并促进了这一事业的发展以及有关科技工作的开展,对中国科学院和中国原子能事业的建设、计划和学术领导都做出了贡献。

1937年,钱三强考取了中法教育基金委员会留法公费生。

夏到达巴黎,当时正在法国参加会议的严济慈亲自将他介绍给了伊莱娜•居里。

伊莱娜•居里和约里奥•居里人称“小居里夫妇”。

钱三强进入居里实验室后,尽量多干具体的工作。

除了自己的论文工作,有机会就帮助别人,目的是想多学一点实验本领。

有人问他为什么这样?钱三强说:“我比不得你们,你们这里有那么多人,各人各干各人的事。

我回国后只有我自己一个人,什么都得会干才行。

”就这样东问西问两年多的实验室工作使钱三强增加了丰富的知识和实际技能。

1939年希特勒军队占领法国,钱三强随同事想逃难,但未能成功。

这时他的公费留学费用中断了,回国不能,留下又没有生计。

在钱三强最困难的时候,当时不肯离开法国的约里奥向他伸出了援助之手,他说:“既然是这样,那还是想法留下吧,只要我们自己能活下去,实验室还开着,就总能设法给你安排”。

1943钱三强回到了巴黎继续在居里实验室做研究工作,直到回国。

钱三强不仅完成了学业,而且凭他的卓越贡献已成为著名的物理学家。

1946年他领导的研究小组利用核乳胶研究铀裂变,发现了著名的铀核三分裂四分裂现象,荣获法国科学院享利•德巴微物理学奖金。

约里奥曾说:“铀核三分裂和四分裂是第二次世界大战以来法国核物理界一个重要工作。

”1947年钱三强担任法国国家科学研究中心研究导师一职。

1948年钱三强回国时小居里夫妇给他写的评语中说:“他对科学事业的满腔热忱,并且聪慧有创见。

我们可以毫不夸张地说,在那些到我们实验室来并由我们指导的同一代科学家中,他最为优秀。

......我们的国家承认钱先生的才干,曾先后命他担任国家科学研究中心研究员和研究导师的高职。

他曾受到法兰西科学院的嘉奖。

”“钱先生还是一位优秀的组织工作者,在精神、科学与技术方面他具备研究机构的领导者所应用的各种品德。

”彭桓武在《我的一生和我的观点》一书中玻恩提到:“在我的学生中有四个很有才华的中国人;其中之一是黄昆...”,另外三人是彭桓武、程开甲和杨立铭。

彭桓武1915年生于吉林长春市,1938年秋赴英在爱丁堡大学随玻恩学习,1940年获哲学博士学位,1945年获科学博士学位,1947年底回国。

玻恩在他的著作《我的一生》中回忆说:“我的第一个中国学生是个矮小而强壮的小伙子,名叫彭(桓武)。

他天赋出众...我记得有一次他在一个理论问题上出了一个错,错误找出来后,他非常沮丧,以致决定放弃科学研究,代之以为中国人民撰写一部大《科学百科全书》,包括西方所有重要的发现和技术方法。

当我说到我以为这对单个人来说是个太大的任务时,他回答道,一个中国人能做10个欧洲人的工作。

...他被任命为爱尔兰都柏林薛定谔高级研究院的教授,作为亥特勒()的继任,...我想彭是得到欧洲教授职位的第一个中国人。

几年以后他决定回中国,在走以前他来看望我们并和我们(指玻恩一家,本文作者注)一路到苏格兰西北高地的尤拉浦尔去,我们在那里度假。

...我们一起度过了美好的几天。

然后他离开了我们再没见过他,他也没写信来。

”玻恩说:“彭除了他那神秘的才干外是很单纯的,外表象一个壮实的农民。

”从玻恩的字里行间渗透出他对这位倔强的中国北方小伙子的喜爱欣赏与想念。

彭先生在英国时与亥特勒合作做介子理论方面的研究,并由于在理论物理方面的贡献1945年与玻恩分享了英国爱丁堡皇家学会麦支杜加尔---布列斯班奖。

回国后继续进行核物理研究,对分子结构提出了以电子键波函数为基础的计算方法。

1956-1957年在他的领导下邓稼先与何祚庥、徐建铭、于敏等合作发表一系列重要论文,为中国核物理研究做了开拓性工作。

彭先生1982年获国家自然科学奖一等奖。

1985年获国家科技进步特等奖。

杨振宁杨振宁(1922—),美籍华人,理论物理学家,1922年10月1日生于安徽省合肥县(今合肥市)。

在西南联合大学物理学系吴大猷指导下完成学士论文,1942年毕业后即入研究院深造,在王竹溪指导下研究统计物理学。

1945年赴美,入芝加哥大学做研究生,受E•费米熏陶,在导师E•特勒的指导下完成博士论文,1948年获博士学位。

1948—1949年任芝加哥大学教员,1948—1955年在普林斯顿高级研究院工作,1955—1966年任该所教授,1966年任纽约州立大学石溪分校的爱因斯坦物理学讲座教授,并任新创办的该校理论物理研究所所长,美国总统授予他1985年的国家科学技术奖章。

1948年12月27日,北京大学授予杨振宁名誉教授授证书。

杨振宁对理论物理学的贡献范围很广,包括基本粒子、统计力学和凝聚态物理学等领域。

对理论结构和唯象分析他都有多方面的贡献。

邓稼先邓稼先(1924—1986),中国核物理学家,1924年6月25日生于安徽怀宁,祖父是清代著名书法家和篆刻家,其父是著名的美学家和美术史家。

七七事变后,全家滞留北平,16岁随其姐来到四川江津念完高中。

1941—1945年在西南联大物理系学习,受业王竹溪、郑华炽等著名教授。

1945年抗战胜利后,迁返北平,应聘于北大物理系任教。

1948年到美国印第安那州普渡大学念研究生,被选入“留美科协”总会干事会。

新中国的诞生促使他决心尽早回到祖国。

1950年8月,在他取得学位后的第九天,冲破重重险阻登上了回国轮船。

1950年10月在中国科学院近代物理研究所任助理研究员,从事原子核理论研究。

1958年8月调到新筹建的核武器研究所任理论部主任,负责领导核武器的理论设计,后历任研究所副所长、所长,核工业部第九研究设计院副院长、院长,核工业部科技委副主任,国防科工委科技委副主任,是我国核武器研制与发展的主要组织者和领导者。

1956年加入中国共产党,曾任中共第十二届中共委员会委员,中国科学院委员。

1985年7月患直肠癌,坚持工作直到生命的最后一刻,1986年7月29日卒于北京,终年62岁。

李政道李政道(1926—),理论物理学家。

1926年11月25日生于上海。

1943—1944年在浙江大学(当时一年级在贵州永兴)物理学系学习,得到老师束星北的启迪,而开始了他的学术生涯。

1944年因翻车受伤停学。

1945年转学到昆明西南联合大学物理学系。

1946年受他的老师吴大猷的推荐,得国家奖学金,去美国深造,入芝加哥大学研究院,1948年春天,李政道通过了研究生资格考试,开始在费米的指导下作博士论文研究。

1949年底,在费米的指导下,李政道完成了关于白矮星的博士论文,获得博士学位。

以后在该校天文学系半年和加利福尼亚大学(伯克莱)物理系一年任讲师并从事研究工作。

1950年,李政道和来自上海的大学生秦惠君结婚。

他们有两个孩子,长子李中清,现任加州理工学院历史教授;次子李中汉,现任密歇根大学化学系助理教授。

1951年到普林斯顿高级研究院工作。

1953年任哥伦比亚大学物理学助理教授,1955年任副教授,1956年任教授,1957年获诺贝尔物理学奖,1960—1963年任普林斯顿高级研究院教授兼哥伦比亚大学教授。

1963年任哥伦比亚大学物理学讲座教授,1964年任该大学费米物理学讲座教授,1983年任该大学全校讲座教授。

他还是美国科学院院士。

李政道对近代物理学的杰出贡献是:1956年和杨振宁合作,深入研究了当时令人困惑的“θ•γ”之谜,即后来所谓的K介子有两种不同的衰变方式,一种衰变变成偶宇称态,一种衰变成奇宇称态。

认识到很可能在弱相互作用中宇称不守恒。

进一步提出了几种检验弱相互作用中宇称是不是守恒的实验途径。

次年,这一理论预见得到吴健雄小组的实验证实。

因此,李政道与杨振宁的工作迅速得到了学术界的公认,并获得了1957年诺贝尔物理学奖。

丁肇中丁肇中(1936—),实验物理学家。

祖籍山东日照。

1956年到美国密执安大学,在物理系和数学系学习,1960年获硕士学位,1962年获物理学博士学位。

1963年,他获得福特基金会的奖学金,到瑞士日内瓦欧洲核子研究中心(CERN)工作。

1964年起在美国哥伦比亚大学工作。

1965年成为纽约哥伦比亚大学讲师。

1967年起任麻省理工学院物理学系教授。

他的研究方向是高能实验粒子物理学,包括量子电动力学、电弱统一理论、量子色动力学的研究。

他所领导的马克•杰实验组先后在几个国际实验中心工作。

由于丁肇中对物理学的贡献,他在1976年被授予诺贝尔物理奖(发现J/Ψ粒子),并被美国政府授予洛仑兹奖,1988年被意大利政府授予特卡斯佩里科学奖。

他是美国国家科学院院士,美国文理科学院院士,前苏联科学院外籍院士,中国台北中央研究院院士,巴基斯坦科学院院士。

他曾被密歇根大学(1978年)、香港中文大学(1987年)、意大利波洛格那大学(1988年) 和哥伦比亚大学(1990年)授予名誉博士学位。

他是中国上海交通大学和北京师范大学的名誉教授。

他曾获得过许多奖章,如1977年获美国工程科学学会的埃林金奖章,1988年获意大利陶尔米纳市的金豹优秀奖及意大利布雷西亚市的科学金质奖章。

他也是《原子核物理B(Nuclear Physics B)》、《核仪器方法(Nuclear Instruments and Methods)》和《数学模型(Mathem atical Modeling)》等科学期刊的编委。

物理学家介绍 (物理学家介绍100字)

什么叫量子引力

量子引力,又称量子重力,是描述对重力场进行量子化的理论,属于万有理论之一隅;主要尝试结合广义相对论与量子力学,为当前的物理学尚未解决的问题。

当前主流尝试理论有:超弦理论、循环量子引力理论、声学类比模型。

背景重力在古典描述下,是由爱因斯坦于1916年建立的广义相对论成功地描述,透过质量对于时空曲率的影响(爱因斯坦方程式)而对水星近日点岁差偏移、重力场下光线红移、光线弯折等三种问题提出了完满的解释,并且至今为止在天文学的观测上,实验数据与广义相对论预测值的相符程度远高于其他竞争理论。

由广义相对论描述古典重力的正确性很少有人怀疑。

另一方面,量子力学从狄拉克建立了相对论性量子力学的狄拉克方程式开始,扩充成量子场论的各种形式。

其中包括了量子电动力学与量子色动力学,成功地解释了四大基本力中的三者--电磁力、原子核的强力与弱力的量子行为。

其中仅剩下重力的量子性尚未能用量子力学来描述。

除了一方面对于重力粒子(引力子)的量子描述未能达成之外,两个成功的理论在根本架构上也有冲突之处:量子场论的架构是建构在狭义相对论的平坦时空下之基本力的粒子场上。

如果要投过这种相同模式来对重力场进行量子化,则主要问题会发生在广义相对论的弯曲时空架构,无法一如以往透过重整化的数学技巧来达成量子化描述,亦即引力子会互相吸引,而当把所有反应加总常会得到许许多多的无限大值,没办法用数学技巧得到有意义的有限值;相对地,例如量子电动力学中对于光子的描述,虽然仍会出现一些无限大值,但为数较少可以透过重整化方法可以将之消除,而得到实验上可量到的、具有意义的有限值。

至于透过实验的检验,很遗憾的,量子引力所探讨的能量与尺度乃是目前实验室条件下无法观测得到的,有些学者提出一些观点可能可以透过天文学上的观测来检验,但仍属少数特例。

因此希望从实验观测得到一些关于量子引力理论发展上的提示,现阶段仍属不可行。

推导量子引力理论的一般方法是假设这个等待发掘的理论会是简单优雅的,然后回头看看现前的理论,找寻对称性及提示以想办法优雅地合并它们成为一个更加普适的理论。

这方法的一项问题是没人可以肯定量子引力是否会是一个简单优雅的理论。

需要这样理论的理由是为了要了解一些涉及庞大质量或能量以及很小尺度的空间的问题,例如黑洞的行为,以及宇宙的起源。

[编辑]历史上的观点历史上,对于量子理论与要求背景独立的广义相对论两者明显的矛盾曾出现过两种反应。

第一种是广义相对论所采的几何诠释并非究竟,而只是一个未知的背景相依理论的近似表现。

举例来说,这在史蒂芬·温伯格的经典教科书《重力与宇宙学》里面被明白表示过。

另外相抗衡的观点是背景独立是基础性质,而量子力学需要被一般化,改写成一个没有缺省特定时间的理论。

这样的几何观点在米斯纳、惠勒与索恩三人合写的经典著作《重力论》中详述过。

由理论物理巨擘所写对于重力意义采相反看法的两本书,很有趣地几乎同时发表于1970年代早期。

出现了这样的僵局使得理查·费因曼(其对于使量子引力获得了解曾做过重要的尝试)在1960年代早期给太太的一封信中,绝望地写道:“提醒我不要再参加任何一个重力会议。

”站在这两种论点的前缘,(时至2005年)一个发展出弦论,而另一个发展出循环量子引力理论。

[编辑]量子力学与广义相对论间的不兼容时至目前为止,理论物理上最深奥的问题之一是调和广义相对论——描述重力并且在大尺度结构(恒星、行星、银河)上可以适用,以及量子力学——描述其他三种作用在微观尺度的基本力。

广义相对论中重要的一课教导了我们没有固定的时空背景,而在牛顿力学与狭义相对论则有出现;时空几何是动态的。

虽然在原则上容易掌握,这却是广义相对论中最难了解的概念,而且它所带来的结果是相当深远的,也没完全地探索完,即使仅就古典层级而言。

就某种程度而言,广义相对论可以视作是一种关系理论,在这样的理论中,物理上唯一要紧的讯息是时空中不同事件彼此间的关系。

另一方面,量子力学则有赖于固定背景,既然它是从固定背景(非动态的)结构中起家的。

在量子力学中,时间是开始就给定而且非动态的,恰如牛顿的古典力学一般。

在相对论性量子场论中,一如在古典场论中,闵可夫斯基时空是理论的固定背景。

最后,弦论是从扩充量子场论出发的,其中点粒子代之以弦样物体,在固定时空背景中做传递。

虽然弦论的起源是在夸克局束(quark confinement)研究方面而不是在量子引力方面,很快就发现弦的频谱包括了引力子,而且弦的几种特定振动模式的“凝聚”等价于对原始背景的修改。

处在弯曲(非闵可夫斯基式)背景下的量子场论,虽然并非重力的量子理论,亦显示了量子场论中的一些假设无法被延伸到弯曲时空中,完善的量子引力理论就更不用提了。

特别地说,真空—当它存在时—被指出和观察者所经过的时空路径有相依性(见盎鲁效应)。

此外,场概念看起来比粒子概念还要来得基本(粒子概念被认为是描述局域交互作用的方便法)。

后者观点是有争议性的,和史蒂芬·温伯格的著作《量子场论》在闵可夫斯基空间中所发展出的量子场论相矛盾。

循环量子引力是建构背景独立量子理论的努力成果。

拓朴量子场论提供了背景独立量子场论的一例,但其没有局域的自由度而仅有有限个全域自由度。

如此要描述3+1维的重力则显得不足;按照广义相对论,即使在真空,重力也有局域自由度。

然而在2+1维,重力就可以是拓朴场论,而其也被成功地透过多种方法进行量子化,包括自旋网络的方法。

此外尚有三处量子力学与广义相对论的拉锯战。

首先,广义相对论预言了自己在奇点会失效,而量子力学在奇点附近则会和广义相对论格格不入。

二者,对于该怎么决定一颗粒子的重力场并不清楚;既然在量子力学的海森堡不确定原理下,粒子的位置与速度无法同时确知。

最后一处的拉锯战并非逻辑上的矛盾,其涉及了“量子力学造成贝尔不等式的违反”(暗示有超光速的影响)与“相对论中光速作为速限”这两者间的困境。

前两点的解决之道可能出自对于广义相对论有更好的了解[1]。

[编辑]理论现有为数不少的量子引力理论被提出来:弦论/超弦/M理论 超重力 反得西特空间(AdS)/顺形场论(CFT) 惠勒-得卫特方程式 循环量子引力 欧几里得量子引力 非交换性几何 扭量 离散洛仑兹式量子引力 沙克哈洛夫式感应重力 Regge微积分 声学度规(声学类比模型)及其他的重力类比模型 过程物理学 量子化重力的“直接”方法有多项选择。

是否要如同霍金一样,采用对威克式旋转过的黎曼度规做泛函积分?参见欧几里得式路径积分方法。

我们有用协变Peierls bracket吗? 我们有用BRST/Batalin-Vilkovisky形式,或规范固定,或规范分解吗? 如果我们选择了正则量子化,我们有用爱因斯坦-希尔伯特作用量将度规仅当作是动态量,以得到惠勒-得卫特方程式吗? 抑或我们将度规与仿射联络各自处理? 抑或我们是否拥有整个庞加莱群以作为规范群,并以爱因斯坦-卡坦理论作为起点? 抑或我们有用移动参考系的卡坦方法以及帕拉丁尼作用量,以得到第二类约束? 我们有否消除掉第二类约束,利用阿许提卡变量来得到循环量子引力,或者我们要做其他方案? 旋量场的存在可能迫使我们要从事卡坦形式或其他相当者的研究。

又或许我们我们应该关注微分同胚群表象,一如韦格纳关注庞加莱群表象一样。

[编辑]温伯格-维腾定理在量子场论中有则温伯格-维腾定理,对于复合重力/涌现重力方面的理论施加了一些约束条件。

量子引力理论的理论简介

(1)克尔解和对引力场和电磁场的分类使得经典广义相对论生机勃勃,而钱德拉塞卡在他后半辈子做的重要贡献,是在克尔时空中解出了Dirac方程。

钱德拉塞卡相当于在天空中引进了超对称。

之后钱德拉的影响就渐渐委靡,因为真正能够集大成的彭罗斯在莎麻的影响下由一个数学家成为一个广义相对论学家。

1985年彭罗斯和林德勒出版了《旋量和时空》,基本上奠定了经典相对论的格局。

wald则在弯曲时空干起了公理化的量子场论。

他开始做半经典半量子的东西。

wald的数学不错,他做弯曲时空量子场论,就是用C星代数,泛函分析。

wald的弯曲时空量子场论,明确地告诉人们:量子代数很重要。

量子代数是绝对的,而粒子,当然是相对于观察者的。

从温茹效应可以看出:真空和粒子是一个依赖于观察者的概念,这是很新奇的。

通俗的说,你看到的电脑和桌子,在别的观察者看来,也许是一片真空。

量子论和相对论的结合出来了新的物理。

最著名的当然是霍金的黑洞热辐射。

人们全在等待量子论和相对论的全面结合。

人们希望追求终极真理。

也许用数理逻辑来说明,终极的量子引力真理并不存在。

但这不会让那些做量子引力的人伤心欲绝。

弦论的领导者威腾认为,也许在别的星球上,是先发现量子引力,然后再发现量子力学和相对论。

这当然是很有可能。

但弦论有一个缺点,就是依赖于时空背景。

在这个星球之上,最优美的量子引力理论会从什么地方出来。

谁也不知道。

很多人曾经年轻,或者正在年轻,有的将要年轻,很多年轻人无法做出判断,从理智上来讲,我相信很多参数全在跑动,凝聚态很重要;从情感上来讲,相对论很优美,把它直接量子化是一件痛快的事情。

这种心情完全是普通生活的写照,多数人很普通,没有天才,没有天才的人可以相信相信量子引力以一种非理性的天才方式出现,比如当年薛定谔方程的出现。

在量子引力上,有二条道路,它们的出发点是广义相对论。

它们就是loop和twistor。

loop量子引力的05年会匆匆地在德国Glom结束。

lom在柏林附近,在potsdam市。

蒋中正委员长在1943年曾经去过potsdam开会,和邱吉尔和斯大林商量在盟国二战胜利以后如何处理日本。

max-planck研究院在那里有一个引力研究所,叫做爱因斯坦研究所。

德国是人才辈出的国家,数学物理上高斯,黎曼,爱因斯坦和希尔伯特,普朗克,海森堡……很多人出现在那块并不是很大的土地之上。

potsdam是一个不大的城市,显得很寂寞。

交通很方便,在那里好象是没有城市和乡村的区别,爱因斯坦研究所在一片荒草地上,应该算是农村了。

loop还很年轻,缺少数学家的帮助。

从1986年ashtekar以联络为新变量开始,到Now大约20年,20年艾虚卡已经老了,2005年loop年会的时候,会上多数报告者报告的时候必称是爱因斯坦研究所的梯曼(thiemann)的业绩,显然他已经是最有才情的新人,还不到四十岁,他已经写了一本loop量子引力的书了,《正则量子引力导引》。

另外一本书是罗维林写的,《量子引力》。

这几个人,他们影响了loop的历史轨道。

thiemann第一次到中国来,我还是一个研究生。

他给我们讲《量子引力》。

德国的马克思普郎克研究院,俗称马普所,地位相对于中国科学院,是国立的,全国各地有它的研究所,里面有一个爱因斯坦研究所,是专门研究引力的。

有一天,Thiemann来中国了,是受到我的导师的邀请来的,4月的北京已经热起来了,Thiemann穿着一件带红色的外套来了,他来给我们上几节课,从量子引力的运动学开始讲起。

那是一个周一的清早,他看上去那么年轻,好象是27岁的样子,让人非常惊异,看上去如此年轻的一个人,居然已经是这个星球上研究loop量子引力的三大领军人物之一了。

他开始讲课了,how to quantize a theory with nstraints?他在黑板上用英文写下。

经典广义相对论的时空3+1分解好了,在hamilton形式里,真空爱因斯坦方程表现为3个约束函数,如何把这3个约束量子化,然后研究量子化以后算子的解空间,这就是loop量子引力。

等量子化好了,函数变成了算子,算子要实现在什么样的希尔伯特空间上呢?也就是说,怎么样把这个算子表示成希尔伯特空间上的算子,Thiemann考虑的是用GNS构造。

他来讲学的第一天上午就这样过去了……(2)loop量子引力最简单的理解是3个相交的圆,每一个圆里分别写着3个字母,C,G,h,这三个字母分别表示的是光速(狭义相对论),引力(广义相对论),planck常数(量子力学)。

也就是说,loop量子引力是想把引力量子化了。

loop量子引力只考虑如何把引力量子化,所以似乎有很多问题 比如:为什么时空是四维的? 如何统一其他的三种力?ashtekar有时候称loop量子引力为量子几何,因为引力只是几何而已。

ahstekar, 他在宾州大学。

他身材矮小,但声音很洪亮,听起来很有振聋发聩的效果,做loop的人也许在内心应该全很感激他,因为他让人们有了一碗饭吃。

虽然据说Now搞loop的正儿八紧能找到工作的也算是一大奇迹。

但做loop的人相信未来的眼睛。

ahstekar的量子引力方法和penrose的扭量方法有共同的平台,那就是广义相对论。

把广义相对论做为基本的出发点这在做物理的人看来不是严肃的事情。

很多人觉得广义相对论是一个低能有效场论,但做loop的人默认一个习惯,就是最基本的东西,是几何的,也就是说,广义相对论是最基本的。

ashtekar这个黑黑的印度人,的确是很有实力的。

他和波兰华沙大学的lewandowski一起写了不少loop的文章。

loop也计算黑洞熵量子代数那种量子化的方法,怎么样用到loop量子引力里来。

在loop量子引力里,最基本的可观察量就是联络沿线的和乐和标架场在一个面积上的通量了。

它们组成了和乐-通量代数。

在量子力学里,人们知道冯纽曼定理,这个定理说明,正则对易关系的表示是唯一的,那就是只有一种量子力学。

loop的进展说明,和乐-通量代数的表示也是唯一的,只有一种loop量子引力。

(3)这生活就是一场战争,有的时候就是这样的,你需要不断地杀死别人才能保全自自己.在loop面前,敌人就是string,潜在的盟友是twistor.他们全出身于广义相对论,有了共同的阶级感情,但全失去了广阔的市场.高尔基曾经说:真理是朴素的。

loop是朴素的。

Max-planck研究院,爱因斯坦研究所的头头是nicolai,他有一个很大的肚子,德国人喜好啤酒,所以多数人有大的肚子,但thiemann是一个例外,他也能拿着啤酒瓶子喝酒,但人却是异常清秀曾经听thiemann讲过loop,他马上就跟上了,写了一个loop入门,Now他又写了一个《旁观者看loop》,文章号是hep-th/。

loop起源于对爱因斯坦方程的直接量子化。

loop理论到Now20年的发展,造就了几个中心,一个是加拿大的圆周研究所(PI),PI的核心人物是lee smolin,smolin写了一个科普书,《通往量子引力的三条路途》。

以及他的前妻,做物理能象做菜一样的马可波罗-芙荑妮.他们已经分手了,但分手之后,他们的爱情故事被圈内人关注,芙荑妮有了新的男朋友,smolin好象也有了新的妻子.所以当2个人坐在一起,在饭桌上聊天,谈笑风生,其实内心有万千头绪已经50出头,前妻30出头,这一对旧人,随着时间流淌。

另外的组一个是法国的Rovelli组,一 个是美国的ashtekar组,还有就是波兰的lewandowski组,还有就是德国的thiemann组,风头最健坚持认为,在高能情景之下,引力还是用爱因斯坦方程描述,原因是因为他们认定,引力不是一种力,而仅仅是几何效应.这种几何,甚至说微分几何,可以被推到planck时期,量子化为量子微分几何.当然,引力为什么不是一种力,原因有很多,引力的非局域性很明显,这也是很特殊的。

比如你无法定义引力的局部能量。

penrose认为,熵和引力是一对矛盾.一个封闭的箱子,熵使得气体分子扩散,做均匀分布,但引力全使得气体分子抱团.所以在黑洞里,情景是黑洞熵不是跟体积成正比证明了黑洞热辐射,得到了熵和黑洞面积成正比号称也能得到同样的结果 的手法是半经典半量子的,好象bohr的原子论,而loop的手法是纯量子的,好象是schrodinger的量子力学. penrose不是一个普普通通的男人,他认为世界的本质是广义相对论,甚至连波函数坍塌也有引力引起.因此,如果penrose 可以相信,twistor和loop全是值得发展的. 引力是孤冷的,在物理学里,面对物理学其他领域的飞速发展和技术实现,引力显得有点绝望了.但事实说明,从牛顿到爱因斯坦,非常杰出的人全对引力入迷。

很多年前学狭义相对论,我觉得很吃惊的是:一切事情已经发生(存在),只是不同的观察者看到不到的场景.仅仅是事情的因果关系还是一致的,对每一个观察者全一样.从广义相对论看来,这个理论里存在世界线,世界线全是给定的,所以似乎人类没有自由意识. 但世界线之间的相互碰撞不能避免。

这可能就是自由意志起作用的地方?相对论很优美,这可以从penrose的<旋量和时空>看出来.经典广义相对论已经被penrose终结.但还剩下一些比如准局部能量的问题.这些问题的背后会给物理学一个新的刺激。

到了Now,我们居然不知道什么是重力势能? 当然相对论也有无能的地方,最简单的3体运动,在牛顿引力就无比复杂,不知道在广义相对论中如何表达这个问题。

在电影《终结者2》中,有一个场景,那就是女主角在桌子上用匕首刻下2个字:no fate.她的意思是说,命运并不存在,人力可以有所作为.这说明,事情纵然凄惨,也许美丽。

这也正是loop量子引力之梦。

评论(0)