本文目录导航:
大质量恒星演化过程
先看下面的图。
叫“赫罗图”,表示不同演化阶段的恒星在图中的位置。
其横座标为恒星的光谱型和表面温度,纵座标为恒星的光度。
图中从右下角到左上角的对角线叫做“主星序”,位于主星序上的恒星叫“主序星”。
下面的图中,表示不同质量恒星的“演化程”。
图中下面的两个恒星的演化程。
从图中可看出,恒星一生中的大部分时间会停留在主星序上。
质量大于10倍太阳质量的恒星(也有理论认为是7-8倍太阳质量)在离开主星序后,会膨胀成为一颗红巨星或红超巨星,在赫罗图中的位置会从主星序移到右上角的红巨星区域。
大于10倍太阳质量的恒星在演化末期都会发生超新星爆发,把它们的低温气体外壳快速抛散到宇宙中去,中留下中央的恒星核。
10倍到20倍太阳质量的恒星留下的恒星核会形成一颗高温、高速旋转的中子星。
而大于20倍太阳质量的恒星的中央会形成一个黑洞。
恒星的演变过程是怎样的
恒星的演变过程:诞生、成年期、中年期、衰退期。
诞生:恒星的演化开始于巨分子云。
一个星系中大多数虚空的密度是每立方厘米大约0.1到1个原子,但是巨分子云的密度是每立方厘米数百万个原子。
一个巨分子云包含数十万到数千万个太阳质量,直径为50到300光年。
成年期:形成主序星,恒星形成之后会落在赫罗图的主星序的特定点上。
小而冷的红矮星会缓慢地燃烧氢,可能在此序列上停留数千亿年,而大而热的超巨星会在仅仅几百万年之后就离开主星序。
中年期:形成红巨星,超巨星。
在形成几百万到几千亿年之后,恒星会消耗完核心中的氢。
大质量的恒星会比小质量的恒星更快消耗完核心的氢。
在消耗完核心中的氢之后,核心部分的核反应会停止,而留下一个氦核。
衰退期:晚年到死亡以三种可能的冷态之一为终结:白矮星,中子星,黑洞。
恒星的演变过程
恒星的起源和演化,长久以来一直是天文学中最基本、也最令人感兴趣的问题。
就和大家分享恒星的演化过程,来欣赏一下吧。
恒星的演化过程(一)恒星的形成恒星形成可分为两个阶段:第一阶段是星云阶段,由极其稀薄的物质凝聚成星云并进一步收缩成原恒星。
第二阶段是原恒星阶段,由原恒星逐渐发展成为恒星。
一般把处于慢收缩阶段的天体称为原恒星。
原恒星进一步形成恒星的收缩过程要持续几百万到几千万年。
(二)恒星的演化恒星的演化如同人的一生,经历从青壮年到更年期、老年期的过程。
(1)恒星的“青壮年期”恒星的“青年期”和“壮年期”是一生中最长的黄金阶段,这时的恒星称为主序星。
人们迄今所知的恒星约有90%都属主序星。
在这段时间,恒星以几乎不变的恒定光度发光发热,照亮周围的宇宙空间。
核燃烧使恒星内部物质产生向外的辐射压力,当辐射压力与引力达到平衡时,恒星的体积和温度就不再明显变化。
(2)恒星的“更年期”恒星的“更年期”出现在恒星核心部分的氢完全转变成氦后,例如有7个太阳质量大小的恒星的“更年期”大约在形成的2600万年后出现。
这一阶段恒星核心经历这些不同的核聚变反应,恒星也经历多次收缩膨胀,其光度也发生周期性的变化。
最后产生巨大辐射压力,自恒星内部往外传递,并将恒星的外层物质迅速推向外围空间,形成红巨星、红超巨星。
(3)恒星的“老年期”恒星的“老年期”是从一颗恒星变成红巨星开始进入这一阶段的。
由于恒星的体积急剧增大,导致恒星的表面温度下降,因而颜色变红。
同时,恒星发光表面的面积剧增,致使整个恒星发出的光大大增强,从而大为增亮。
这种又红又亮的恒星就是红巨星。
(三)恒星的归宿恒星内部的热核反应是不会永远进行下去的,当恒星的核燃料耗尽时恒星也走到了它的尽头。
由于恒星自身物质之间的巨大引力始终存在,随着恒星内部热核反应的停止,尽管恒星外层部分会出现膨胀、爆发等复杂的变动,核心部分却必定在引力作用下发生急剧的收缩、即所谓引力坍缩。
因此当恒星内部的核燃料消耗殆尽时,常会发生一场空前激烈的爆发。
整个星体或者炸得粉碎,把恒星物质重新抛人广袤的星际空间,成为产生新一代恒星的原料,或者只剩下一个残骸。
恒星的归宿因初始质量不同而有三种不同的结局,即白矮星、中子星和黑洞。
恒星演化原因20世纪30年代,物理学家从理论上发现,原子核反应会产生巨大的能量。
用这种理论来研究太阳的能源,发现太阳的能源正好可以用核反应来解释。
各种年龄的恒星内部发生着各种热核反应;恒星演化过程中会发生一系列热核反应,轻元素逐渐向重元素转化,逐渐改变恒星的成分,改变恒星的内部状态。
并且,发生这些热核反应所需要的温度也越来越高。
恒星内部热核反应所产生的能量以对流、传导和辐射三种方式传输出来。
由于大多数恒星的物质是气态的,热传导作用不大,只有内部极其致密的特殊恒星(例如白矮星),内部热传导才比较显著。
大多数恒星内部主要依靠辐射来传输核反应产生的能量,传输的速度相当慢,例如太阳把它深达70万千米的中心处的能量传输到表面,需要1000万年。
对流传输能量的速度比辐射快得多,但是不同质量的恒星,对流层的位置和厚度很不一样。
主星序左上部的恒星,质量大,中心区是小的对流核,外面是辐射包层。
主星序中下部的恒星,质量较小,内部辐射层很厚,仅表面有较薄的对流层。
主星序右下部的恒星,质量很小,整个恒星是对流的。
恒星内部产生的能量决定了它的表面温度和光度。
物理定律把恒星内部的运动、能量的产生、能量的传递和消耗与它的温度、压力、密度、成分等因素联系了起来。
其中一个因素的变化会引起其他因素的变化。
因此,研究天体的演化就是要在物理定律的制约下,说明各种因素如何协调地变化。
按照天体的质量和化学成分,运用物理定律,可以计算出不同时间的内部结构,即从恒星中心到表面各层的温度、密度、压力、能流及恒星辐射的总光度和表面温度等物理量,从而可以确定恒星在赫罗图上的位置;这样还可以得出恒星的结构与物理参量随时间的变化情况,这样也就得出了恒星演化的过程,也就可以看出恒星在赫罗图上位置移动。
这就是研究恒星演化的基该方法。
把核反应理论应用于恒星演化,计算的结果正好符合观测的数据,证明了这种理论及其应用的正确性。
于是,恒星演化理论开始发展了起来。
评论(0)